PyTorch trick 集锦

news/2024/7/24 9:09:58

 

转载一篇知乎大佬写的:

作者丨z.defying@知乎

来源丨https://zhuanlan.zhihu.com/p/76459295

目录:

  1. 指定GPU编号
  2. 查看模型每层输出详情
  3. 梯度裁剪
  4. 扩展单张图片维度
  5. one hot编码
  6. 防止验证模型时爆显存
  7. 学习率衰减
  8. 冻结某些层的参数
  9. 对不同层使用不同学习率
  10. 模型相关操作
  11. Pytorch内置one hot函数
  12. 网络参数初始化(小学生 补充
  13. 加载内置预训练模型

1、指定GPU编号

  • 设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0os.environ["CUDA_VISIBLE_DEVICES"] = "0"
  • 设置当前使用的GPU设备为0,1号两个设备,名称依次为 /gpu:0/gpu:1: os.environ["CUDA_VISIBLE_DEVICES"] ="0,1" ,根据顺序表示优先使用0号设备,然后使用1号设备。
  • 指定GPU的命令需要放在和神经网络相关的一系列操作的前面。

2、查看模型每层输出详情

Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。使用很简单,如下用法:

from torchsummary import summary
summary(your_model, input_size=(channels, H, W))

input_size 是根据你自己的网络模型的输入尺寸进行设置:https://github.com/sksq96/pytorch-summary

3、梯度裁剪(Gradient Clipping)

import torch.nn as nn

outputs = model(data)
loss= loss_fn(outputs, target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()

nn.utils.clip_grad_norm_ 的参数:

  • parameters – 一个基于变量的迭代器,会进行梯度归一化
  • max_norm – 梯度的最大范数
  • norm_type – 规定范数的类型,默认为L2

4、扩展单张图片维度

因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:

import cv2
import torch

image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())

img = image.view(1, *image.size())
print(img.size())

# output:
# torch.Size([h, w, c])
# torch.Size([1, h, w, c])

import cv2
import numpy as np

image = cv2.imread(img_path)
print(image.shape)
img = image[np.newaxis, :, :, :]
print(img.shape)

# output:
# (h, w, c)
# (1, h, w, c)

import cv2
import torch

image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())

img = image.unsqueeze(dim=0)  
print(img.size())

img = img.squeeze(dim=0)
print(img.size())

# output:
# torch.Size([(h, w, c)])
# torch.Size([1, h, w, c])
# torch.Size([h, w, c])

tensor.unsqueeze(dim):扩展维度,dim指定扩展哪个维度。

tensor.squeeze(dim):去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。

5、独热编码

在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。

import torch
class_num = 8
batch_size = 4

def one_hot(label):
    """
    将一维列表转换为独热编码
    """
    label = label.resize_(batch_size, 1)
    m_zeros = torch.zeros(batch_size, class_num)
    # 从 value 中取值,然后根据 dim 和 index 给相应位置赋值
    onehot = m_zeros.scatter_(1, label, 1)  # (dim,index,value)

    return onehot.numpy()  # Tensor -> Numpy

label = torch.LongTensor(batch_size).random_() % class_num  # 对随机数取余
print(one_hot(label))

# output:
[[0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0.]]

6、防止验证模型时爆显存

验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。

with torch.no_grad():
    # 使用model进行预测的代码
    pass

7、学习率衰减

import torch.optim as optim
from torch.optim import lr_scheduler

# 训练前的初始化
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1)  # # 每过10个epoch,学习率乘以0.1

# 训练过程中
for n in n_epoch:
    scheduler.step()
    ...

可以随时查看学习率的值: optimizer.param_groups[0]['lr']

还有其他学习率更新的方式:

1、自定义更新公式:

scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch:1/(epoch+1))

2、不依赖epoch更新学习率:

lr_scheduler.ReduceLROnPlateau()提供了基于训练中某些测量值使学习率动态下降的方法,它的参数说明到处都可以查到。
提醒一点就是参数 mode='min' 还是'max',取决于优化的的损失还是准确率,即使用 scheduler.step(loss)还是scheduler.step(acc) 。

8、冻结某些层的参数

参考:Pytorch 冻结预训练模型的某一层

在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。我们需要先知道每一层的名字,通过如下代码打印:

net = Network()  # 获取自定义网络结构
for name, value in net.named_parameters():
    print('name: {0},\t grad: {1}'.format(name, value.requires_grad))

假设前几层信息如下:

name: cnn.VGG_16.convolution1_1.weight,	 grad: True
name: cnn.VGG_16.convolution1_1.bias,	 grad: True
name: cnn.VGG_16.convolution1_2.weight,	 grad: True
name: cnn.VGG_16.convolution1_2.bias,	 grad: True
name: cnn.VGG_16.convolution2_1.weight,	 grad: True
name: cnn.VGG_16.convolution2_1.bias,	 grad: True
name: cnn.VGG_16.convolution2_2.weight,	 grad: True
name: cnn.VGG_16.convolution2_2.bias,	 grad: True

后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:

no_grad = [
    'cnn.VGG_16.convolution1_1.weight',
    'cnn.VGG_16.convolution1_1.bias',
    'cnn.VGG_16.convolution1_2.weight',
    'cnn.VGG_16.convolution1_2.bias'
]

冻结方法如下:

net = Net.CTPN()  # 获取网络结构
for name, value in net.named_parameters():
    if name in no_grad:
        value.requires_grad = False
    else:
        value.requires_grad = True

 冻结后我们再打印每层的信息:

name: cnn.VGG_16.convolution1_1.weight,	 grad: False
name: cnn.VGG_16.convolution1_1.bias,	 grad: False
name: cnn.VGG_16.convolution1_2.weight,	 grad: False
name: cnn.VGG_16.convolution1_2.bias,	 grad: False
name: cnn.VGG_16.convolution2_1.weight,	 grad: True
name: cnn.VGG_16.convolution2_1.bias,	 grad: True
name: cnn.VGG_16.convolution2_2.weight,	 grad: True
name: cnn.VGG_16.convolution2_2.bias,	 grad: True

 可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。

最后在定义优化器时,只对requires_grad为True的层的参数进行更新。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)

 9、对不同层使用不同学习率

我们对模型的不同层使用不同的学习率。还是使用这个模型作为例子:

net = Network()  # 获取自定义网络结构
for name, value in net.named_parameters():
    print('name: {}'.format(name))

# 输出:
# name: cnn.VGG_16.convolution1_1.weight
# name: cnn.VGG_16.convolution1_1.bias
# name: cnn.VGG_16.convolution1_2.weight
# name: cnn.VGG_16.convolution1_2.bias
# name: cnn.VGG_16.convolution2_1.weight
# name: cnn.VGG_16.convolution2_1.bias
# name: cnn.VGG_16.convolution2_2.weight
# name: cnn.VGG_16.convolution2_2.bias

对 convolution1 和 convolution2 设置不同的学习率,首先将它们分开,即放到不同的列表里:

conv1_params = []
conv2_params = []

for name, parms in net.named_parameters():
    if "convolution1" in name:
        conv1_params += [parms]
    else:
        conv2_params += [parms]

# 然后在优化器中进行如下操作:
optimizer = optim.Adam(
    [
        {"params": conv1_params, 'lr': 0.01},
        {"params": conv2_params, 'lr': 0.001},
    ],
    weight_decay=1e-3,
)

我们将模型划分为两部分,存放到一个列表里,每部分就对应上面的一个字典,在字典里设置不同的学习率。当这两部分有相同的其他参数时,就将该参数放到列表外面作为全局参数,如上面的`weight_decay`。

也可以在列表外设置一个全局学习率,当各部分字典里设置了局部学习率时,就使用该学习率,否则就使用列表外的全局学习率。

10、模型相关操作

https://zhuanlan.zhihu.com/p/73893187

11、Pytorch内置one_hot函数

import torch.nn.functional as F
import torch

tensor =  torch.arange(0, 5) % 3  # tensor([0, 1, 2, 0, 1])
one_hot = F.one_hot(tensor)

# 输出:
# tensor([[1, 0, 0],
#         [0, 1, 0],
#         [0, 0, 1],
#         [1, 0, 0],
#         [0, 1, 0]])

F.one_hot会自己检测不同类别个数,生成对应独热编码。我们也可以自己指定类别数:

tensor =  torch.arange(0, 5) % 3  # tensor([0, 1, 2, 0, 1])
one_hot = F.one_hot(tensor, num_classes=5)

# 输出:
# tensor([[1, 0, 0, 0, 0],
#         [0, 1, 0, 0, 0],
#         [0, 0, 1, 0, 0],
#         [1, 0, 0, 0, 0],
#         [0, 1, 0, 0, 0]])

12、网络参数初始化

以下介绍两种常用的初始化操作。

(1) 使用pytorch内置的torch.nn.init方法。

常用的初始化操作,例如正态分布、均匀分布、xavier初始化、kaiming初始化等都已经实现,可以直接使用。具体详见PyTorch 中 torch.nn.init 中文文档。

init.xavier_uniform(net1[0].weight)

(2) 对于一些更加灵活的初始化方法,可以借助numpy。

对于自定义的初始化方法,有时tensor的功能不如numpy强大灵活,故可以借助numpy实现初始化方法,再转换到tensor上使用。

for layer in net1.modules():
    if isinstance(layer, nn.Linear): # 判断是否是线性层
        param_shape = layer.weight.shape
        layer.weight.data = torch.from_numpy(np.random.normal(0, 0.5, size=param_shape)) 
        # 定义为均值为 0,方差为 0.5 的正态分布

 

13、加载内置预训练模型

torchvision.models模块的子模块中包含以下模型:

  • AlexNet
  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet

导入这些模型的方法为:

import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()

有一个很重要的参数为pretrained,默认为False,表示只导入模型的结构,其中的权重是随机初始化的。

如果pretrained 为 True,表示导入的是在ImageNet数据集上预训练的模型。

import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
vgg16 = models.vgg16(pretrained=True)

更多的模型可以查看 torchvision.models

 

 


http://www.niftyadmin.cn/n/1149913.html

相关文章

巧破网页禁用鼠标右键

第一种情况,出现版权信息类的。破解方法如下: 在页面目标上按下鼠标右键,弹出限制窗口,这时不要松开右键,将鼠标指针移到窗口的“确定”按钮上,同时按下左键。现在松开鼠标左键,限制窗口被关闭了…

模型压缩之网络剪枝(Network Pruning)篇

1. 背景 今天,深度学习已成为机器学习中最主流的分支之一。它的广泛应用不计其数,无需多言。但众所周知深度神经网络(DNN)有个很大的缺点就是计算量太大。这很大程度上阻碍了基于深度学习方法的产品化,尤其是在一些边…

一位10年Java工作经验的架构师聊Java和工作经验

从事近十年的 JavaEE 应用开发工作,现任阿里巴巴公司系统架构师。对分布式服务架构与大数据技术有深入研究,具有丰富的 B/S 架构开发经验与项目实战经验,擅长敏捷开发模式。国内开源软件推动者之一,Smart Framework 开源框架创始人…

使用深度学习从视频中估计车辆的速度

车速预测 代码:https://github.com/SharifElfouly/vehicle-speed-estimation 我想要解决的问题是:在一辆车里有一个摄像头,我想知道车开得有多快。你显然不能看速度表,只能看视频片段本身。深度学习魔法应该能帮助我们。

[jQuery]empty()和remove()的区别

要用到移除指定元素的时候&#xff0c;发现empty()与remove([expr])都可以用来实现。可仔细观察效果的话就可以发现。empty()是只移除了 指定元素中的所有子节点&#xff0c;拿$("p").empty()来说&#xff0c;他只是把<p>dsfsd</p>中的文本给移除了&…

将数据库数据用Excel导出主要有3种方法

将数据库数据用Excel导出主要有3种方法 (2011-04-27 09:05:05) 转载▼标签&#xff1a; 将 数据库 数据 用excel导出 主要有 3种方法 it 将数据库数据用Excel导出主要有3种方法&#xff1a;用Excel.Application接口、用OleDB、用HTML的Tabel标签方法1——Excel.Application接口…

超轻量目标检测模型NanoDet

华为P30上用NCNN移植跑benchmark&#xff0c;每帧仅需10.23毫秒&#xff0c;比yolov4-tiny快3倍&#xff0c;参数量小6倍&#xff0c;COCO mAP(0.5:0.95)能够达到20.6 。而且模型权重文件只有1.8mb&#xff0c;对比动辄数十兆的模型&#xff0c;可以说是相当友好了~ Android De…

CNN:我不是你想的那样

摘要 每当我们训练完一个CNN模型进行推理时候&#xff0c;一旦出现人类无法解释的现象就立刻指责CNN垃圾&#xff0c;说这都学不会&#xff1f;其实你可能冤枉它了&#xff0c;而本文试图为它进行辩护。 本文是CVPR2020 Oral论文&#xff0c;核心是从数据高低频分布上探讨CNN泛…